edict

Smart Bidirectional Charging of Electric Vehicles – an Analysis of Revenue Opportunities

3 Analysis the typical charging scenarios by clustering

Faßbender, Max; Cao, Xinyuan; Wang, Haoran; Andert, Jakob (MMP, RWTH)

Schade, Thomas; Mützel, Samuel; Schülting, Philipp; Xia, Feihong; Wegener, Marius; Savelsberg, Rene (BEM-S+BEM-C, FEV)

Teaching and Research Area

 $f_{\text{FCR}} = f - P_{\text{FCR}} \cdot c_{\text{FCR}} + \epsilon_{\text{FCR}} \cdot c_{\text{Fee}}$

 $P_{\text{VL},E_{\text{cap}}} = \frac{c_{\text{LP}}}{2 \cdot 1,25 \cdot 0,25 \text{ h}}$

deviations

40

20

12:00

accordingly

-50 00:00

Offered FCR Power cannot be higher than the

 $0 \le P_{FCR} \le \min(P_{VL,E_{kap}}, P_{VL,P_{max}}, P_{VL,P_{min}})$

 $0 \le P_{\text{buy}} \le P_{\text{buy,max}} \cdot bit_{\text{buy}} - P_{\text{FCR}} \cdot X_{\text{FCR}}$

 $P_{\text{sell,min}} \cdot bit_{\text{sell}} + P_{\text{FCR}} \cdot X_{\text{FCR}} \le P_{\text{sell}} \le 0$

Total Energy $E_{\rm act}^{\rm tot}$ should be sufficient to

 X_{FCR} is activated (>0) based on grid frequency

Max. Energy Min. Energy

00:00

Time

4 Dynamic Power limitation

If available grid Power is reduced the optimizer reacts

FCR Buffer —— Vehicle Energy

store/provide FCR Energy if requested

 $P_{\text{FCR}} \cdot X_{\text{FCR}} \cdot 0.25 \text{ h} - \epsilon_{\text{FCR}} \leq E_{\text{act}}^{\text{tot}} - E_{\text{min}}^{\text{tot}}$

 $P_{\text{FCR}} \cdot X_{\text{FCR}} \cdot 0.25 \text{ h} + \epsilon_{\text{FCR}} \leq E_{\text{max}}^{\text{tot}} - E_{\text{act}}^{\text{tot}}$

charging power of the connected EVs or the GCP

Scaling up of simulation results

obtain a regression surface that represents the cost for three years after scale-up. The scaled-up cost of three years has an error of three-year

1 Explanation

An algorithmic approach to optimally charge electric vehicles is presented. The approach is based on a moving horizon optimization where as an output the optimal charging or discharging power for the EVs connected at the charging point is determined.

The algorithm provides the following features:

Bidirectionally charge EVs while considering the respective user needs (Energy at departure, minimum Energy during charging).

React to dynamic power limitations at charge point level

Reserve power and energy for frequency containment reserve provision

1 General Information

 Requirements, Codes and regulations ensure compatibility and safe operation of charging infrastructure

12:00

 $0 \le b_{\text{buy}} \le 1$

 $0 \le b_{\text{sell}} \le 1$

 $P_{\text{sell,min}} \cdot b_{\text{sell}} + P_{\text{FCR}} \le P_{\text{sell}}^- \le 0$

Integer logic prohibits buying and

selling energy simultaneously

12:00

voltage, harmonic content, ... - Electrical safety requirements cover issues of electrical shock, e.g.,

- Functional requirements cover system-based issues, e.g., Grid

- touch voltage, leakage current, ...
- There are different requirements for the charging station and the electric vehicle

2 European Union

- Standards are harmonized for all countries in the EU
- European HD (Harmonized document) is transferred to local standard with same contents

3 Other regions worldwide

 Local regulations can cause different concepts for functional and safety requirement, which has to be evaluated individually

4 Overview EV charging standardization landscape

Monetary cost and "soft constraint"-

cost are considered

 $c_{\mathrm{con}} = \epsilon_{\mathrm{energy}} \cdot c_{\mathrm{Emin}} + \epsilon_{\mathrm{power}}^{+} \cdot c_{\mathrm{power}}^{+} + \epsilon_{\mathrm{power}}^{-} \cdot c_{\mathrm{power}}^{-}$

 $x \in \mathbb{R}^{N_p \cdot (6 + n_{EVSE} \cdot 7)}$

 N_n : Prediction Horizon

atio Regu the Standardization