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a General Information G Overview EV charging standardization landscape

— Requirements, Codes and regulations ensure compatibility and safe

operation of charging infrastructure S o

*|[EC 60364-7-722

, , , . *[EC 61851-1
— Electrical safety requirements cover issues of electrical shock, e.qg., |EC 62752 OBC

touch voltage, leakage current, ... |[EC 62955 Em 218(5)(1)—214:1

*EN 61000-6-3
*EN 61140
-I *|SO 6469-3
— 5, *ISO 17409
9 European Union Electrical Grid

*EN 61000-3-12
— Standards are harmonized for all countries in the EU *\VVDE 0100-100

— European HD (Harmonized document) is transferred to local *lEC 60364-1
standard with same contents *

— Functional requirements cover system-based issues, e.g. Grid
voltage, harmonic content, ...

— There are different requirements for the charging station and the
electric vehicle

within the EU

e Other regions worldwide

Cables Communication Plugs

— Local regulations can cause different concepts for functional and « EN 50620 * 1SO 15118-20  IEC 62196
safety requirement, which has to be evaluated individually S ° .. .

Standardization and Regulation Landscape
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