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 Abbreviations and Definitions 

 

BESS  Battery Energy Storge System 

DER  Distributed Energy Resources 

OBC  On-Board Charger 

PV  Photovoltaic 

REC  Renewable Energy Communities 

RES  Renewable Energy Sources    

SOC  State of Charge 

V1G  Unidirectional charging 

V2G  Vehicle-to-Grid 

V2H  Vehicle-to-Home 

V2B  Vehicle-to-Building 
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Executive Summary 

The overarching goal of the XL-Connect project is the optimization of the complete 

charging chain – from energy supply to the end consumer. One main optimization 

aspect being the charging process and the utilization of smart charging and 

bidirectional charging functionalities. In order to maximize the potential of these 

functionalities, the development of adequate charging strategies is necessary and shall 

be realized within the XL-Connect project. 

These strategies shall be tested in several virtual and real-world demonstrations, within 

work-package 5 of the XL-Connect project. The real-word demonstration provides the 

proof of feasibility of these strategies in a real context. Beside private demonstrations, 

that are more controllable regarding the access of users, public demonstrators will also 

be implemented in order to acquire realistic user-data and verify the technical feasibility 

of the EVSE and the algorithms with a wide range of EVs. In addition, virtual 

demonstrations will cover use-cases with a higher amount of EVs as well as more 

complex use-cases. 

This deliverable provides an overview of the virtual demonstration actions treated in 

this project.  

Keywords: smart charging, V2G, V2B, simulated use-cases 
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1. Introduction 

 

As described in Figure 1 virtual and real use cases and the corresponding data are 

used to build a scalable digital twin of an energy system. As a result, it is possible to 

investigate the impacts on the grid, the environment, emissions, on electric vehicle 

(EV) batteries as well as on society. The real-world demonstrations give not only 

important insight regarding power-to-hydrogen and AC-microgrids for large parking 

areas. Another very important part of the real-world demonstrations is the 

communication between charging station and the vehicle, especially on the ISO 15118-

20 which focuses on bidirectional charging. Although it is important to build and analyse 

real world demonstrations, especially in the context of new charging technologies, the 

simulated virtual use cases deliver valuable results and data for the digital twin. 

In the following sections the three virtual use cases and their results of the project will 

be presented. The first virtual use case describes a renewable energy community 

(REC) in combination with EV charging. The results show in which extent it is possible 

to increase the self-sufficiency rate of all participants as well as reducing the energy 

exchange with the medium-voltage grid. Participating in these types of RECs could be 

applied at parking areas next to a university campus or even a company. The second 

virtual use case investigates if and how vehicle-to-building can be an alternative 

solution for a local storage for an industrial site that heavily invests in renewable 

energy. In addition, the usage of waste heat for the heating system is investigated. The 

third use case has a closer look on on-road parking in smart cities. Here an aggregator 

is trained with supervised learning to optimise the Vehicle-to-Grid (V2G) application for 

smart city applications. Therefore, different EV penetration rates as well as different 

level of willingness to use V2G are assumed. 

Figure 1: Overview on virtual and real Use Cases in XL-Connect 
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2. Scalable model for Energy Communities with charging park areas 

The proposed model aims to study optimal energy dispatching methods within 

Renewable Energy Communities (REC) with possible EV charging events, and it is 

designed to be adaptable for different case studies, with a particular focus on real-

world demonstration activities related to parking areas servicing point of interest such 

as University campus, or company parking. UNIFI. 

REC are composed of various consumers and energy producers connected to the low 

voltage grid referring to the same medium-to-low voltage substation. Their members, 

by aligning production and consumption across different sites as much as possible, 

can potentially reduce overall power exchanges with the grid and optimize them based 

on the energy market price profile. 

The model, built in MATLAB-Simulink environment (Figure 2), allows for the 

characterization of one or more locations. These locations exchange local data with an 

aggregator, which aims to schedule upcoming power flows based on each location’s 

needs and forecast data. The main goals for the Communities include the optimization 

of the energy exchange between partners (at a very local level), overall reducing 

energy exchanges with the medium-voltage grid substation. This typically implies 

increasing the share of self-consumption of Renewable Energy Sources (RES); further 

grid services can be provided by Energy Communities. For the scopes of the 

demonstration action energy management has been assumed as main target. The 

model described in this paragraph implement an energy community comprehending 

two main locations and a planning system for energy management. 

 

Figure 2: Simulink model with two locations: Design Campus Parking and Moving Unifi lab, along with a local aggregator for optimizing scheduled 

power flows. The proposed example is in accordance with the real case of UNIFI. 

The model is intended to provide a technical solution for energy management and to 

verify data aggregation, system calibration and overall feasibility. The effective 

advantages in terms of economic benefit depend on boundary conditions such as local 

energy cost, business model adopted and local country existing regulation; in this 
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phase, costs have been assessed using ENTSOE (i.e. a public database, as described 

in this chapter) data as main source.  Each location can implement and configure the 

characteristics of the parking site, a potential Photovoltaic system (PV) coupled with a 

Battery Energy Storage System (BESS), and the power demand of a building. The 

complete list of parameters is shown in Table 1. 

 

Parking: chargers characteristics  

 Number of chargers  

 Nominal powers [kW] 

 Chargers type “V1G” / “V2G” 

 Current type “AC” / “DC” 

Battery energy static storage  

 Nominal capacity [kWh] 

 Max charging rate [1/h] 

 Max discharging rate [1/h] 

 Mean estimated efficiency [%] 

Photovoltaic characteristics  

 geo Properties  

 Latitude [ °] 

  Longitude [ °] 

  Tilt angle [ °] 

  Azimuth angle [ °] 

  Albedo factor [%] 

 PV characteristics  

 Peak power [kW] 

 Mean estimated efficiency [%] 

Building/Home  

  Measured power demand [kW] 

 Max power from grid (bought) [kW] 

 Max power to grid (sold) [kW] 

 

Table 1: Parameters for defining a location of a REC. 

2.1. Simulated timeframe of charging events 

As input for the simulation, a simulated timeframe of possible charging events is 

generated in accordance with the expected arrivals for a specific parking area. For 

instance, an event generator for a business parking area (such as the UNIFI Moving 

lab) should create events with a high probability of arrivals in the early morning hours. 

Assuming that the derivative of load profile is proportional to the variation of the number 

of active stations, the probability curve of arrivals is based on the exponential of the 

derivative of the mean power absorbed by vehicles in a business cluster (Figure 3). 
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For every simulation a set of user and vehicle characteristics are generated.  Assuming 

greater flexibility in scheduling the charge via APP, the user could specify the desired 

final State of Charge (SOC), estimated parking time, and whether they are open to 

V1G or V2G charging methods. Based on the information gathered, users can be 

classified into three main categories, Priority, V1G and V2G, as shown in Table 2: 
Classification of user types based on provided charging preferences. 

 

 

Figure 3: Arrival probability curve for a business parking area. This curve is derived from the exponential of the derivative of the mean power 

consumption profile absorbed by vehicles in a business cluster of ESTRA charging stations located in the peripheral area of Florence [1]. The 

probability is set to zero during closing hours. 

 
 

User type Description 
SOC 

target 

Estimated 

parking 

time 

 
Priority    

  
Full 

charge 
Charges at maximum power 

Not 

required 

Not 

required 

  
Partial 

charge 

Charges to a specific SOC at 

maximum power 
Required 

Not 

required 

 
V1G Allows modular charging Optional Required 

 
V2G  Allows bidirectional charging Optional Required 

Table 2: Classification of user types based on provided charging preferences. 
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2.2. Model description 

Each location may include a charging park. The management of EVs arriving at the 

location is simulated using the Sim Events library, where vehicles are paired with 

chargers based on a simple matrix of load probabilities. In cases where a user and a 

charging station have different levels of flexibility (e.g. a priority user paired with a V2G-

enabled charging station), the pairing mechanism constrains the charging method to 

the lower level of flexibility imposed. 

 

Figure 4: Schematic representation of vehicle generation and pairing with a preferable available charging station. 

Each location model also includes high-level simplified sub-models for buildings, BESS 

and PV systems. These sub-models are responsible for updating internal state 

variables based on the power schedules. The full set of internal state variables is then 

passed as input to the main aggregator, enabling the optimization of power flows. 

The Intra-Day Optimization process is triggered whenever a new charging event 

begins or ends before expected. This process determines the charging schedules for 

vehicles and BESSs, considering current charging events, forecasted energy 

consumption of REC buildings, forecasted photovoltaic production, and day-ahead 

energy prices retrieved via an API from the ENTSO-E Transparency Platform [2] 

(Figure 5). 

The Intra-Day Optimization is structured by defining the following elements for each 

location: 

• Optimization Variables: 

A set of variables id defined for each time step in the optimization horizon. 

These variables include [Table 3]: 

1. Power exchange with EVs (𝑃𝐸𝑉), with local BESS (𝑃𝐵𝐸𝑆𝑆), and with local 

low-voltage grid (𝑃𝐺𝑅𝐼𝐷).  

2. SOC evolution over time for EVs (𝑆𝑂𝐶𝐸𝑉) and for local BESS (𝑆𝑂𝐶𝐵𝐸𝑆𝑆).  

3. Sub-optimization variables are defined to enable custom piecewise-

linear cost functions for aging penalties: these ensure the optimization 

problem remains linear, avoiding the need for non-linear optimization 

methods, which are more computationally expensive. Specifically, for 



 D5.2 Virtual Demonstration Actions 

  Page 14 | 45 

each EV and BESS, a set of five variables is defined for Power 

(  𝑃𝑙𝑜𝑤𝑑𝑖𝑠;  𝑃ℎ𝑖𝑔ℎ𝑑𝑖𝑠;  𝑃𝑚𝑒𝑑𝑖𝑢𝑚; 𝑃𝑙𝑜𝑤_𝑐ℎ;  𝑃ℎ𝑖𝑔ℎ_𝑐ℎ ) and SOC 

(  𝑆𝑂𝐶𝑙𝑜𝑤;  𝑆𝑂𝐶𝑚𝑖𝑛;  𝑆𝑂𝐶𝑚𝑒𝑑𝑖𝑢𝑚;  𝑆𝑂𝐶ℎ𝑖𝑔ℎ;  𝑆𝑂𝐶𝑚𝑎𝑥 ). These sub-variables 

are restricted to a limited range within the domain of the main variables 

and are designed to penalize extreme value of SOC and power. A similar 

approach is applied to the global power exchanged with the grid, 

penalizing deviations from the expected mean grid power to promote 

stability and efficiency. 

 

Figure 5: Location sub-components and state variables passed as input for the optimization. 

 

 Variable Description Symbol 

 Local   

  Power to EV 𝑃𝐸𝑉 
EV power sub-

variables 

  EV State of Charge 𝑆𝑂𝐶𝐸𝑉 EV SOC sub-variables 

  Power to BESS 𝑃𝐵𝐸𝑆𝑆 
BESS power sub-

variables 

  BESS State of Charge 𝑆𝑂𝐶𝐵𝐸𝑆𝑆  
BESS SOC sub-

variables 

  
Power to low-voltage 

Grid 
𝑃𝑙𝑜𝑐_𝐺𝑅𝐼𝐷 

               

           

   1( )

    ( )

    ( )

   01     1

   0      

   0      

      
           

               
                     

           
                                

     
                          

       ( )
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 Global   

  
Power to medium-

voltage grid 
𝑃𝑔𝑙_𝐺𝑅𝐼𝐷 

Grid power sub-

variables 

Table 3: Variables defined for the optimization problem. 

 

• Problem Constraints: 

These define the rules and limits which the optimization operates [Table 4], 

including: 

1. Power Balance Constraint for ensuring that energy supply equals demand at 

each time step. 

2. User flexibility constraints applied to the vehicle charging processes. These 

constraints reflect the user’s preferences for the desired charging behaviour. 

For AC charging, they also account for the minimum power level required for 

the On-Board Charger (OBC) to convert power from to DC. 

3. Sub-Constraints Applied to Sub-Optimization Variables: the sum of the sub-

variables equals the corresponding main variable. 

 

Constraint Equation 

 Local  

 Power 

balance 

constraint 

𝑃𝑃𝑉 + 𝑃𝐺𝑅𝐼𝐷 = 𝑃𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 +∑𝑃𝐸𝑉𝑖 + 𝑃𝐵𝐸𝑆𝑆 

 

User 

flexibility 

constraints 

V1G user 𝑃𝐸𝑉 ≥ 0 

Priority user 𝑃𝐸𝑉 = 𝑃𝑚𝑎𝑥𝑐ℎ 

OBC minimum 

power level 

constraint 

{
𝑃𝐸𝑉 ≥ 𝑏𝑃𝑚𝑖𝑛𝑐ℎ
𝑃𝐸𝑉 ≤ 100𝑏

,  
𝑏 as a Boolean 

variable 

Target SOC user 𝑆𝑂𝐶𝑓(𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) = 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 

 
SOC 

evolution 

constraints 
{
 

 ∆𝑆𝑂𝐶𝐸𝑉 =
𝜂𝑃𝐸𝑉
𝑐𝑎𝑝

           𝑃𝐸𝑉 ≥ 0

∆𝑆𝑂𝐶𝐸𝑉 =
𝑃𝐸𝑉
𝜂𝑐𝑎𝑝

 𝑃𝐸𝑉 ≤ 0
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Sub-

constraints 

𝑆𝑂𝐶𝐸𝑉 = 𝑆𝑂𝐶𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑆𝑂𝐶ℎ𝑖𝑔ℎ + 𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑙𝑜𝑤

− 𝑆𝑂𝐶𝑚𝑖𝑛 

𝑃𝐸𝑉 = 𝑃𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑃𝑙𝑜𝑤_𝑐ℎ + 𝑃ℎ𝑖𝑔ℎ_𝑐ℎ − 𝑃𝑙𝑜𝑤_𝑑𝑖𝑠 − 𝑃ℎ𝑖𝑔ℎ_𝑑𝑖𝑠 

 Global  

 Power 

balance 

constraint 

𝑃𝑔𝑙_𝑔𝑟𝑖𝑑 =∑𝑃𝑙𝑜𝑐_𝑔𝑟𝑖𝑑𝑖 

 Sub-

constraint 
𝑃𝑔𝑙_𝑔𝑟𝑖𝑑 = 𝑃𝑔𝑙_𝑚𝑒𝑑𝑖𝑢𝑚 + 𝑃gl _ℎ𝑖𝑔ℎ + 𝑃𝑔𝑙_𝑚𝑎𝑥 − 𝑃𝑔𝑙_𝑙𝑜𝑤 − 𝑃𝑔𝑙_𝑚𝑖𝑛 

 
Table 4: Constraints defined for the optimization problem. 

• Cost Functions: 

The optimization process uses MATLAB’s intlinprog to minimize a weighted 

sum of cost functions while respecting constraint boundaries [Table 5-Table 6]. 

The cost functions include: 

1. Energy Cost Function for minimizing energy costs based on day-ahead 

energy prices. Using energy price curve for power flow optimization not only 

results in cost savings, but also helps achieve hourly demand-supply balance 

and Distributed Energy Resources (DER) consumption within REC’s zone. The 

energy price profile for the day-ahead market is typically established by 

Transmission System Operators (TSO): prices vary hourly and with specific 

geographic zones based on balance between local energy production, 

consumption and the capacity of the grid to transfer power along high-voltage 

lines with other areas. 

2. Aging Cost Functions, designed to limit excessive battery usage, particularly 

at high power levels and extreme SOC values. Sub-variable values are 

penalized with progressive weights to discourage excessive power usage 

(reducing cycling aging) and prolonged maintenance at extreme SOC levels 

(reducing calendar aging), as shown in Figure 6. 

3. Grid Efficiency Cost Functions, which are designed to achieve peak shaving 

and reduce the overall energy exchanged with the grid. Peak Shaving Function 

applies a penalty to grid power values that deviate significantly from the 

expected mean grid power, encouraging smoother and more stable power 

usage; Grid Selling Power Function penalizes energy sold to the grid to 

minimize total energy exchanges, aligning with the project’s objectives to reduce 

impact on grid demand. 
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Figure 6: Custom piecewise-linear cost function for reducing battery aging. Boundary values for power are scaled with the capacity 

(10 𝑘𝑊ℎ for this example). 

An example of the possible results of intra-day optimization with mixed user constraints 

is shown in Figure 7: Priority users are granted maximum available power, while 

flexible users follow scheduled power flows aligned with peak PV production and low 

grid prices. Similarly, the BESS power flow is scheduled based on the same principles 

but with a broader optimization horizon and fewer constraints. 
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Cost Functions Equations 

 Local  

 Aging cost functions 

𝑪𝒄𝒂𝒍_𝒂𝒈𝒊𝒏𝒈 = 𝑲𝒎𝒊𝒏𝑺𝑶𝑪𝒎𝒊𝒏 +𝑲𝒍𝒐𝒘𝑺𝑶𝑪𝒍𝒐𝒘 +𝑲𝒉𝒊𝒈𝒉𝑺𝑶𝑪𝒉𝒊𝒈𝒉 +

𝑲𝒎𝒂𝒙𝑺𝑶𝑪𝒎𝒂𝒙  

𝑪𝒄𝒚𝒄_𝒂𝒈𝒊𝒏𝒈 = 𝑲𝒉𝒊𝒈𝒉_𝒅𝒊𝒔𝑷𝒉𝒊𝒈𝒉_𝒅𝒊𝒔 +𝑲𝒍𝒐𝒘_𝒅𝒊𝒔𝑷𝒍𝒐𝒘_𝒅𝒊𝒔 +𝑲𝒍𝒐𝒘_𝒄𝒉𝑷𝒉𝒊𝒈𝒉_𝒄𝒉

+𝑲𝒉𝒊𝒈𝒉_𝒄𝒉𝑷𝒉𝒊𝒈𝒉_𝒄𝒉 

 Global  

 Energy cost function 𝑪𝒆𝒏𝒆𝒓𝒈𝒚 = 𝒑𝒓𝒊𝒄𝒆 ∙ 𝑷𝒈𝒍𝒈𝒓𝒊𝒅 

 Peak shaving function 
𝑪𝒔𝒉𝒂𝒗𝒊𝒏𝒈 = 𝑲𝒔𝒉_𝒎𝒊𝒏𝑷𝒈𝒍_𝒎𝒊𝒏 +𝑲𝒔𝒉_𝒍𝒐𝒘𝑷𝒈𝒍_𝒍𝒐𝒘 +𝑲𝒔𝒉_𝒉𝒊𝒈𝑷𝒈𝒍_𝒉𝒊𝒈𝒉

+𝑲𝒔𝒉_𝒎𝒂𝒙𝑷𝒈𝒍_𝒎𝒂𝒙 

 Power selling penalty 𝑪𝒔𝒐𝒍𝒅 = 𝑲𝒔𝒐𝒍𝒅𝑷𝒈𝒍_𝒔𝒐𝒍𝒅  

Table 5: Cost Functions defined for the optimization problem. 

Parameters 
Description; Weighted 
applied to: 

Variable range 
Param 

Value 

 
Energy 

price 
𝑝𝑟𝑖𝑐𝑒 Day-ahead energy prices [𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 ÷ 𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥] 

~(5 ÷ 30) 

[𝑒𝑢𝑟/𝑀𝑊ℎ] 

 
Aging cost 

parameters 

𝐾𝑚𝑖𝑛 Lowest SOC range [0 ÷ 0.1] 9 

𝐾𝑙𝑜𝑤 Mid-low SOC range [0.1 ÷ 0.3] 3 

𝐾ℎ𝑖𝑔ℎ Mid-high SOC range [0.7 ÷ 0.9] 3 

𝐾𝑚𝑎𝑥 Highest SOC range [0.9 ÷ 1] 9 

𝐾ℎ𝑖𝑔ℎ_𝑑𝑖𝑠 High-discharging power range [𝑃max _𝑑𝑖𝑠 ÷−1.2 ∙ 𝑐𝑎𝑝] 0.375 ∙ 𝑐𝑎𝑝 

𝐾𝑙𝑜𝑤_𝑑𝑖𝑠 Low-discharging power range [−1.2 ÷ −0.2] ∙ 𝑐𝑎𝑝 0.15 ∙ 𝑐𝑎𝑝 

𝐾𝑙𝑜𝑤_𝑐ℎ Low-charging power range [0.5 ÷ 1.5] ∙ 𝑐𝑎𝑝 0.1 ∙ 𝑐𝑎𝑝 

𝐾ℎ𝑖𝑔ℎ_𝑐ℎ High-charging power range [1.5 ∙ 𝑐𝑎𝑝 ÷ 𝑃𝑚𝑎𝑥 _𝑐ℎ] 0.15 ∙ 𝑐𝑎𝑝 

 

𝐾𝑠ℎ_𝑚𝑖𝑛 Lowest grid power range [𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 ÷−3 ∙ 𝑃𝑚𝑒𝑎𝑛] 0.03 

𝐾𝑠ℎ_𝑙𝑜𝑤 Mid-low grid power range [−3 ÷ −1] ∙ 𝑃𝑚𝑒𝑎𝑛 0.01 
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Peak 

shaving 

parameters 

𝐾𝑠ℎ_ℎ𝑖𝑔ℎ Mid-high grid power range [1 ÷ 3] ∙ 𝑃𝑚𝑒𝑎𝑛 0.01 

𝐾𝑠ℎ_𝑚𝑎𝑥 Highest grid power range [3 ∙ 𝑃𝑚𝑒𝑎𝑛 ÷ 𝑃𝑔𝑟𝑖𝑑_𝑚𝑎𝑥] 0.03 

 

Power 

selling 

parameter  

𝐾𝑠𝑜𝑙𝑑 Grid power globally sold [𝑃𝑔𝑟𝑖𝑑_𝑚𝑖𝑛 ÷ 0] 0.04 

Table 6: Tuneable parameters for the optimization cost functions. 

 

Figure 7: An example of intra-day optimization results: a-b) Comparison of demand and supply power, c) Energy price profile from ENTSO-e API, 

d) Grid power consumption profile from various sites, e-f) BESS power and SOC profile, g-h) EVs power and SOC profile with different user 

2.3. Results 

Virtual results are analysed to illustrate the model's behaviour. Considering a 

configuration example with two locations, the fixed parameters for the charging park 

are detailed in Table 7. 
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Location Nominal power Charger type Current 

type 

Land 

Moving 

Lab 

[50;  22;  22] 𝑘𝑊 V2G; V2G; 

V1G 

DC; DC; 

AC 

Private 

Area 

Design 

Campus 

[22;  22;  11] 𝑘𝑊 V2G; V2G; 

V1G 

DC; DC; 

AC 

Public Area 

Table 7 Charging Park configurations for the examined case studies. 

As outlined in paragraph 0, the pairing mechanism between user and charger operates 

based on the lowest level of flexibility. Then, whether a V2G user connects to the third 

V1G charger, the charging process will default to V1G mode. 

For the simulations, four main scenarios are analysed to evaluate the impact of smart 

charging technologies on grid energy demand, RES share, and the service provided 

to vehicles: 

• V1G Scenario: All users allow for smart charging flexibility. 

• V2G Scenario: All users allow for bidirectional charging flexibility. 

• Priority 1 Scenario: A hypothetical scenario where the same vehicles and load 

as in the first two scenarios are applied, but without any optimization. This 

serves as a baseline to assess the effectiveness of smart charging 

technologies. 

• Priority 2 Scenario: All users are prioritized and always have access to a free 

charging point. This serves for assessing the reduction of number of vehicles 

served and the potential decrease in total energy consumption. 

Charging Park coupled with PV system: 

For this case study, the capability of smart charging technologies to reduce grid impact 

by aligning vehicle energy consumption with PV production is analysed. The peak 

power of the PV system is set to 30 kW. As shown in Figure 8, the optimization function 

significantly improves the alignment between vehicle consumption and photovoltaic 

production, leveraging the enhanced flexibility of V1G/V2G vehicles; Moreover, V2G 

enables energy to be fed back into the grid during periods of congestion and high 

energy prices. Some KPIs for the simulation are reported in Figure 9, highlighting a 

potential 9% increase in self-consumption of RES and a 10% increase in RES 
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coverage of energy demand in the V2G scenario compared to the Priority 1 scenario. 

The total energy exchanged with the grid, which is formulated as: 

𝐸𝑁𝑔𝑟𝑖𝑑 = ∫ |𝑃𝑔𝑟𝑖𝑑(𝑡)|𝑑𝑡
𝑡𝑓

𝑡0

 

is reduced by 45% compared to the Priority 2 scenario. However, due to the increased 

resting time per vehicle, the total number of completed charging sessions is reduced 

by 42%: This indicates that smart charging technologies are better suited for contexts 

with lower and more predictable demand, such as residential areas (for overnight 

events) and company parks (for daytime events). Conversely, for fast charging 

stations, it could lead to a significant reduction in service availability and potential 

revenue. 

 

Figure 8: Simulated results for the PV coupling case study across four different scenarios: V1G, V2G, Priority 1, and Priority 2. The EVs' demand 

load is compared with PV production and the energy price profile throughout a week  
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Figure 9: Comparison of KPIs for the different charging scenarios 

Charging Park Supporting Building Energy Demand: 

Capabilities of smart charging technologies to support building utilities are analysed, 

focusing on shaving overall grid power and reducing total energy costs. For this case 

study, the energy consumption of the Moving Lab building will be considered. 

Simulated results indicate a marginal reduction in energy costs: 4% for V2G and 2.5% 

for V1G compared to the uncontrolled scenario, with the same amount of energy 

supplied. Using V1G, charging events are shifted to periods with lower energy prices, 

while V2G leverages discharging possibility to sell energy during high-price periods. 

This trend is clearly illustrated in Figure 10. Furthermore, these technologies can 

manage high power peaks demand from building by either pausing vehicle charging or 

providing V2B services.  

 



 D5.2 Virtual Demonstration Actions 

  Page 23 | 45 

 

Figure 10: Simulated results over a 3-day time span, comparing building energy demand with EV power consumption across the four scenarios 

 

 

Figure 11: Comparison of average power consumption by time slot, relative to mean energy prices. V2G and V1G demonstrate flexibility to 

schedule charging during low-price periods 
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3. Neuman Aluminium Use Case 

In this virtual use case, renewable energy sources in combination with storage 

possibilities including a vehicle-to-building concept are investigated. The overall goal 

is to analyse the energy consumption and the impacts of increasing renewable energy 

sources in terms of financial benefits. In general, the company Neuman Aluminium, 

located in Lower Austria, has a yearly energy demand of around 110,000 MWh 

because to their energy intensive production processes. The energy demand in the 

year 2022/23 can be divided in around 36% electricity demand and around 64% natural 

gas demand. According to this high energy demand, Neuman has employed two 

hydroelectric power plants with an overall size of 0.95 MWp and a photovoltaic (PV) 

system of size 100 kWp which was expanded to 1.1 MWp in June 2023. Currently, 

these power plants produce 4,100 MWh/year. The virtual use case contains two 

scenarios where the PV system is further increased up to 4 MWh (scenario 2) and two 

wind turbines with an overall size of 9 MWp (scenario 3) are included. An overview of 

the scenarios can be seen in Table 8. 

 

  Status quo Scenario 2 Scenario 3 

 Hydropower plant 0.95 MWp 0.95 MWp 0.95 MWp 

 PV system  1.1 MWp 4 MWp 4 MWp 

 Wind turbine - - 9 MWp 

Table 8: Scenario Overview on the Virtual Use Case of Neuman Aluminium 

The analysis contains four-steps, where the first two steps investigate the energy 

production and consumption data to determine the periods and amount of surplus of 

energy production. With these findings, a vehicle-to-building concept for a parking area 

for self-consumption optimization or peak shaving is conceptualised and investigated 

within the third step. When analysing this, it is also important to show under which 

conditions the employees would agree to (temporarily) discharge their vehicles. This 

is investigated by using survey data that were collected during the project. In the fourth 

and last step, a battery storage is simulated as an alternative storage solution. A 

schematic overview of the working steps in the Neuman use case can be seen in 

Figure 12.  

 

Figure 12: Work steps in the Neuman Use Case 

3.1. Methodology 

One of the most important parts of this virtual use case are the real-world data provided 

by Neuman Aluminium. For the analysis consumption data in 15-minute resolution over 
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1 year of gas and electricity were used. The data show the energy consumption of 

three different facilities of the company. To represent the PV production of the different 

scenarios data of an already installed smaller PV (100kWp), where data of over one 

year are available, as well as data of a 1.1 MWp system which started to operate in 

June 2023 were used. For the hydropower plant, only monthly production data were 

available. The data was therefore distributed evenly over the month in order to obtain 

a data set of the same length. In order to include the wind turbine in the analysis, wind 

speed data from a nearby measuring station in Lilienfeld was used to make a model-

based calculation of the expected production. 

To calculate the electricity that can be produced by a wind turbine the equation below 

is applied. The power of the wind (𝑃) is determined as: 

𝑃 = 0.5 ∙ 𝐴 ∙  𝜌 ∙ 𝐶𝑝(𝑣) ∙ 𝑣
3 

where the surface area of the blade (𝐴) is defined by 𝐴 =  𝜋 ∙ 𝑟2, where 𝑟 is the radius 

of the rotors. In addition, 𝜌 is the density of the air, 𝐶𝑝 is the power coefficient that 

defines how much energy can be extracted by the wind turbine at a certain windspeed 

(𝑣). For the analysis the power coefficient and other technical data of the Gamesa 

G128 – 4.5MW wind turbine were used (Wind Turbine Models, 2024).  

The windspeed data are in 10-minute resolution from a monitoring station close to 

Neuman Aluminium. As the monitoring station measures windspeed in 10 m height the 

windspeed has to be adapted by applying the power law method which is defined by 

the following formula (Abbes et al., 2012): 

𝑣2 = 𝑣1 ∙ (
ℎ2
ℎ1
)
𝛼

 

where 𝑣1 and 𝑣2 are the windspeed at the height of the monitoring station (ℎ1) and the 

height of the wind turbine (ℎ2). The value of 𝛼 is determined by the terrain type and 

generally is estimated to range from 0.1 to 0.4 in engineering application (Li et al., 

2018). 

Figure 13 gives an overview about the different data sources and how they are used 

for the scenario analysis. The green boxes represent the energy production while the 

blue boxes represent the three facilities at Neuman Aluminium that consume energy. 

In the middle of the scheme there are two grey boxes which represent the work steps 

in which the energy surplus/deficit is analysed and the energy management system 

which decides how the energy is used.  
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Figure 13: Data and Module Scheme of the Neuman Aluminium Use Case 

 

The KPIs in Table 9 are used to evaluate the scenarios and the various configurations 

in financial and energy terms: 

KPI Formula 

Self-sufficiency rate (SSR)   R =
𝐸𝑢𝑠𝑒𝑑
𝐷

 

Self-consumption rate (SCR)  CR =
𝐸𝑢𝑠𝑒𝑑
𝑆

 

Net present value (NPV) 𝑁𝑃𝑉 =∑
𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤𝑡
(1 + 𝑟)𝑡

𝑇

𝑛=0

 − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 

Return on investment (ROI) 𝑅𝑂𝐼 =  
𝑛𝑒𝑡 𝑢𝑡𝑖𝑙𝑖𝑡𝑦

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
⋅ 100 

Pay-back period (PBP) 𝑃𝐵𝑃 =  
𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤
 

Table 9: KPIs used in the Neuman Aluminium Use Case 

Where 𝐸𝑢𝑠𝑒𝑑   is the amount of produced energy that is consumed, 𝐷 is the energy 

demand and 𝑆 is the energy production. The 𝑛𝑒𝑡 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = (𝑆𝑎𝑣⋅𝑇 − 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡𝑠⋅𝑇) − 

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡, where 𝑆𝑎𝑣 are the yearly savings, 𝑇 is 25 years. Finally, the annual 

cashflow is defined as 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤 = 𝑆𝑎𝑣 − 𝑎𝑛𝑛𝑢𝑎𝑙 𝑐𝑜𝑠𝑡𝑠. 
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3.2. Results 

To get insights about the potential energy surplus for the two scenarios, the average 

week was calculated and compared. As shown in Figure 14 there is only little room for 

surplus in scenario 2. During the week, the energy demand of Neuman Aluminium is 

still significantly higher than the energy production. When comparing scenario 2 with 

scenario 3 it can be seen that during the week, the energy demand is still higher than 

production but, on the weekend, there is potential for energy surplus that could be 

shifted to Monday when the energy demand of Neuman Aluminium increases again. 

 

 

Figure 14: Average Week of Scenario 2 and 3 
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The next step was to take a closer look at the surplus per weekday. By cumulating the 

surplus energy per weekday, it could be seen that in scenario 2 mainly on Saturday 

and Sunday a surplus was generated. In comparison to that scenario 3 shows surplus 

energy over the whole week (see Figure 15). As in scenario 2 the biggest share of the 

surplus was generated on the weekend but overall, the surplus of over 6,600 MWh is 

significantly higher than the 170 MWh of surplus in scenario 2. Therefore, only scenario 

3 was used to investigate the vehicle-to-building (V2B) use case and the local storage 

setup as only in this scenario the potential surplus is high enough. 

 

 

Figure 15: Surplus per Weekday in Scenario 2 and 3 

Before the structure of the V2B and local storage is explained, the investment 

assumptions for the expansion of renewable energies for scenario 3 are presented. 

For the PV expansion, a price of EUR 700/MWp is assumed for the modules and 

installation, which corresponds to the conditions that Neuman Aluminium had for the 

PV expansion in June 2023, including governmental subsidies. An average value from 

several sources was used for the investment and installation costs of the wind turbine. 

Therefore, the assumed investment costs for the expansion of renewable energy in the 

scenario require investment costs of EUR 15.4 million. In addition, annual operating 

and maintenance costs of 1% of the investment costs are assumed (see Table 10). 
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Investment costs EUR EUR 

PV 700,000 per 

MWp 

2.03 Mio. 

Wind turbine 1.3 Mio. per 

MWp 

11.83 Mio. 

Installation in EUR 

Wind turbine 1.57 Mio. 

 

Overall investment costs in 

EUR 

15.43 Mio. 

Yearly O&M costs 1% of investment costs 

 

Energy price 

Grid tariff 131.76 in 

EUR/MWh Feed-in tariff 86.97 In 

EUR/MWh Table 10: Investment and Price Information 

 

For the V2B setup, the battery size of the vehicles is assumed to be 50 kWh, where 20 

kWh are assumed as usable capacity per vehicle. The reason for this is that it is 

assumed that the SoC must not fall below 40% or above 80%. Depending on the 

number of EVs available, this results in a usable capacity of 2 to 8 MWh, when 100 to 

400 EVs on the car park are assumed. According to information from Circontrol, the 

costs for the required charging stations are between EUR 730,000 and EUR 2,900,000 

(see Table 11) 

 

 
Per charging 

station Max. power of bidirectional charging station 22 kW 

Price for hardware for bidirectional charging stations 

 

7,000 € 

 
Software for bidirectional charging stations 150 € 

Hardware for energy management platform and stationary 

controllers 

100 € 

Energy management software  150 € 

 

 Costs of the charging 

stations 100 EVs 732,500 EUR 

200 EVs 1,465,000 EUR 

300 EVs 2,197,500 EUR 

400 EVs 2,930,000 EUR 
Table 11: Investment Information on the bidirectional Charging Stations 

 

One drawback of the V2B setup is, that the usable capacity is only available when 

employees are at work. Therefore, no capacity is available at the weekend. Figure 16 
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shows that during Saturday 05:00 a.m. and Monday 04:59 a.m. no useable capacity is 

available. 

 

Figure 16: Available Capacity in the V2B Setup 

When analysing this simplified setup of the V2B setup over a time horizon of 25 years, 

it can be shown that overall investment costs are between 16.2 to 18.5 Mio. EUR, 

depending on the number of charging stations assumed (see Table 12).  Note that the 

costs for the renewable expansion are included as well. The analysis shows that with 

the V2B setup, savings of around 2.5 Mio. EUR per year can be reached. The net 

present value (NPV) is positive, and the payback period (PBP) lies between 6.6 and 

7.4 years. 

 

Vehicle-to-Building 100 EVs 200 EVs 300 EVs 400 EVs 

Overall investment costs 16.19 Mio. 

 

16.94 Mio. 

 

17.70 Mio. 

 

18.45 Mio. 

 
O&M in EUR 146k 153k 161k 168k 

 
Max Power / 15 min in 

MWh 

0.55 1.10 1.65 2.20 

Savings in EUR 2.47 Mio. 

 

2.48 Mio. 

 

2.48 Mio. 

 

2.49 Mio. 

 
NPV 16.6 Mio.- 

 

15.8 Mio. 

 

15.0 Mio. 

 

14.2 Mio. 

 
ROI 211.2 198.1 185.8 174.4 

PBP 6.6 6.8 7.1 7.4 

SSR 46.5% 

 

46.9% 

 

47.3% 

 

47.6% 

 
SCR 74.8% 

 

75.6% 

 

76.2% 

 

76.6% 

 
Energy used in MWh 18.7k 

 

18.9k 

 

19.0k 

 

19.1k 

 

Table 12: Results of the V2B Setup 

With the V2B setup the self-sufficiency rate (SSR) of Neuman Aluminium increases 

from around 10 % (status quo) up to 47.6% (when 400 EVs are available).  The SCR 

in the V2B setup lies between 74.8% and 76.6% which refers to 18,670 to 19,115 MWh 

of used energy. Figure 17 shows the amount of energy bought, sold and used in this 

setup. The energy amount as well as the SCR, SSR and PBP change only slightly 

when increasing the number of EVs. 
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Figure 17: Energy bought, sold and used in the V2B Setup 

 

Next, the V2B setup is compared to a setup where a local storage is used. Therefore, 

it is assumed that Neuman Aluminium uses a 2/4/6/8 MWh battery to store the surplus 

energy. The main advantage of the battery is, that it is always available in comparison 

to the EVs.  

Table 13 shows the assumed investment costs. For the analysis we assume costs of 

400,000 EUR/MWh for the battery as well as 3% of investment costs for installation 

and 1% of investment costs for the yearly operation and maintenance works. This leads 

to investment costs between 800,000 and 3,200,000 EUR depending on the used 

battery size. In addition, we assume that the battery must be changed after 3,000 

cycles (European Commission, 2023). 

 

 

 

Cost of local storage 

Costs per MWh 

Capacity 

400,000 

Installation 

costs 

3% of investment costs 

Yearly O&M 

costs 

1% of investment costs 

Cycles 3,000 
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 Costs of the local storage 

2 

MWh 

800,000 EUR 

4 

MWh 

1,600,000 EUR 

6 

MWh 

2,400,000 EUR 

8 

MWh 

3,200,000 EUR 
Table 13: Investment Information on the Local Storage 

Results show that in terms of investment the charging stations and the battery are quite 

similar (see Table 14). In general, the biggest part of the investment costs are the costs 

of the expansion of renewable energy in Neuman Aluminium which are around 15 Mio. 

EUR. 

Battery storage 2 MWh 4 MWh 6 MWh 8 MWh 

Overall investment costs 16.26 Mio. 

 

17.08 Mio. 

 

17.91 Mio. 

 

18.73 Mio. 

 
O&M in EUR 147k 

 

155k 

 

163k 

 

171k 

 
Max Power / 15 min in 

MWh 

1.0 2.0 3.0 4.0 

Savings in EUR 2.48 Mio. 

 

2.49 Mio. 

 

2.50 Mio. 

 

2.51 Mio. 

 
NPV 13.3 Mio 

 

10.0 Mio. 

 

10.1 Mio. 

 

7.6 Mio. 

 
ROI 167.13 

 

140.70 

 

132.42 

 

112.07 

 
PBP 8.38 

 

9.42 

 

9.77 

 

10.82 

 
SSR 47.0% 

 

47.7% 

 

48.2% 

 

48.6% 

 
SCR 75.7% 

 

76.8% 

 

77.7% 

 

78.3% 

 
Energy used in MWh 18.9k 

 

19.2k 

 

19.4k 

 

19.5k 

 
Battery changes 4 3 2 2 

Table 14: Results on the Local Storage Setup 

Like the V2B setup, the yearly savings are around 2.5 Mio. EUR and the SSR and SCR 

increase up to 48.6% or 78.3%. But, in comparison to the V2B setup the NPV and the 

PBP are worse. The reason for that is that the battery must be changed 2 to 4 times 

within 25 years which impacts the overall economic feasibility of the setup. Comparing 

Figure 17 with Figure 18 a similar picture can be seen. The energy amounts, SSR and 

SCR are quite similar between the setups but the PBP for the battery setup increases. 
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Figure 18: Energy bought, sold and used in the Local Storage Setup 

When comparing these two setups it is shown that V2B can be an alternative for 

Neuman Aluminium in terms of investment (see Table 14). Nevertheless, there is one 

big drawback that must be considered, which is the willingness to participate of the 

employees as at the moment charging and discharging costs of zero are assumed. 

Therefore, the total costs over 25 years of usage were compared to find out how much 

room is available for incentives. When comparing the total costs of the charging 

stations and a local storage around 230 to 450 EUR/a can be given to the employees 

over 25 years.2 

 

 100 EV / 

2MWh 

200 EV / 

4MWh 

300 EV / 

6MWh 

400 EV 

/ 8MWh 

Lifetime costs of the stationary 

storage in EUR 

23.2 Mio. 

 

25.9 Mio. 

 

26.9 Mio. 

 

29.6 

Mio. 

 

Lifetime costs of V2B in EUR 19.8 Mio. 

 

20.8 Mio. 

 

21.7 Mio. 

 

22.7 

Mio. 

 

Difference in EUR 3.4 Mio. 

 

5.1 Mio. 

 

5.2 Mio. 

 

6.9 Mio. 

 
Difference per year in EUR 135,296 

 

204,672 

 

208,128 

 

277,504 

 
Possible incentives per EV per 

year in EUR 

451 

 

341 

 

231 

 

231 

 
Additional cycles per year through 

V2B  

70 52 43 37 
Table 15: Comparison of the Lifetime Costs of the V2B and Local Storage Setup 

To summarise, the total cost of the V2B concept (bidirectional charging stations and 

energy management system) is lower than that of a stationary battery system, 

 
2 Note: as there are three work shifts per day at Neuman Aluminium, the number of employees ranges from 300 to 1,200. 
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considering that employees use their private cars. This difference can be used to 

incentivise employees and motivate them to participate in V2B. Overall, it can be said 

that the V2B concept has lower costs and battery replacement is not required after a 

certain number of cycles are reached, but there is uncertainty about the usable 

capacity, which heavily depends on the SoCs of the EVs and whether employees are 

willing to participate. The advantage of local storage is that it is always available and 

there is no uncertainty regarding utilisation, resulting in a slightly higher SSR and SCR. 

However, local storage is associated with higher lifetime costs and the modules must 

be replaced after a certain number of cycles have been reached. 

3.3. Further project activities 

These first results show that V2B can be used as an alternative to local storages at an 

industrial environment. However, there are still uncertainties and open questions 

because of this first simplified analysis. Therefore, the model will be further developed 

to give more insights regarding the usage of V2B. Frist, the model will consider the 

different work shifts and variation in SoCs of the EVs. Second, we will include monetary 

user incentives and check if the V2B setup can still compete with the local storage.  

Therefore, we use insights from the survey on user behaviour and expert interviews 

which were undertaken in WP2. In these interviews and survey different types of 

incentives were explained and asked about. Therefore, these valuable insights will be 

used to enrich Neuman Aluminium's V2B model with an incentive system for EV users. 

In addition, further investigations regarding the use of the waste heat of the charging 

stations for heating will be done. 
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4. On-road parking in smart cities 

In 2023, there were over one million electric vehicles in circulation in France, most of 
which were battery-electric.[1][1] According to the latest statistics, the total population 
of France is about 68 million, while the population of the Lyon metropolitan area is 
about 522,000 and the population of the entire Lyon metropolitan area is about 
2,308,000 people. The population of the Lyon metropolitan area accounts for 
approximately 3.4% of the total population of France, while the urban area accounts 
for only 0.76% of the population. As shown in the following Figure 19 the number of 
BEVs in France is 595,795 and the number of plug-in hybrids (PHEVs) is 424,263 in 
2023, that would put the overall number of rechargeable cars at more than 1 million. If 
we do a quick calculation, simply assume that the number of electric vehicles is linearly 
related to population, it is possible to roughly estimate the number of electric vehicles 
in the city of Lyon, which is about 34070 vehicles.  
  

 
Figure 19: Electric vehicle fleet in France between 2011 and 2023, by propulsion type [2] 

  

 
Figure 20: Quarterly electric vehicle charging points in France between the first quarter of 2019 and the fourth quarter of 2023, by type [3] 
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As shown in Figure 20, the number of public charging posts in France as of the fourth 
quarter of 2023 is 11,809 across the country, or about 4,012 if the number of public 
charging points of Lyon is also estimated based on the population share. It is easy to 
conclude that the ratio of public charging stations to the number of electric vehicles 
around the Lyon city is around 0.12. It can be imagined that during workday, most of 
the EV charging events can be handled at home or at company. Even though the 
number of private and company-owned charging points is relatively high compared to 
public charging points, and most drivers prefer to install a wall-box charger at home, 
the density of traffic in urban areas increases significantly on weekends, and there is 
a high probability that charging peaks and congestion will occur with the current share 
of public charging points.  
  
In this virtual demonstration, efforts will be made to solve the problem of peak charging 
at urban area while taking into account as much as possible the charging behaviour of 
the users and minimizing their costs. This virtual demonstration is patterned based on 
Lyon, France, and generates charging events using public chargers based on the city's 
traffic and drivers' driving routes. Using these generated charging events, the benefits 
of applying smart charging and bi-directional charging technologies to public charging 
stations in the city is discussed. It also demonstrates the possibility of providing flexible 
energy storage for the grid while satisfying EV users’ satisfaction.  
  

4.1. Behaviour of electric vehicle drivers in Lyon 

The IFPEN user model needs to predefine the user behaviour relative parameters to 
generate possible charging activities in Lyon. The model selects the appropriate 
charging station to park for charging between the starting point and the destination. 
The parking time is influenced by the time of the next activity defined by the users. 
Please refer to D4.2 and D4.3 [4][5] of this project for specific technical information on 
this user model. 
  

• V2X: willing of the EV drivers to use the bi-directional charging technology like 
V2B or V2G. The percentage of users willing to use bi-directional charging 
technology was set to 0% 20% 40% 60% and 100% respectively. 

• Range anxiety: It is a threshold to decide when the user will go for charging. 
The charging choice is triggered when SOC is below a given threshold 
minSOC (DoD), independently from future trip plans. As described in D2.2 of 
XL Connect [6], a min SOC value near 40-45% in average seems realistic, 
especially considering the incentives. 

• Willingness to wait: The parking times of users are determined as the 
complement of the time spent on other activities. In the user model the next 
planned activities are predefined, so the users need to have their vehicle 
charged to the target energy so that they can go for the next activities E.g. go 
home, go to work, or shopping… 

• EV penetration rate: By 2023, the world's share of electric vehicles is about 
18%, with 21 % in the European Union [7]. If optimistically, this figure may 
increase slightly from the same level in the next two years. Therefore, we have 
chosen a 30% penetration rate as a scenario for the virtual presentation, and a 
5% penetration rate for the comparison group. 

• Vehicle battery capacity: Assume a normal distribution centered at 80kWh and 
truncated at 60/100 kWh.  
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• Battery health: The DoD of battery is limited to minSOC = 20% and 
targetSOC=80%. 

  

4.2. Charging Activities           

For the urban street parking scenario, the output details the actual charging activities 
of all EV users in the metropolitan area of Lyon who do not have the option to charge 
at home. Detailed information is provided about the charging station selected, the type 
of charger employed, as well as the quantity of charge. Their charging decisions are 
influenced by predefined parameters, such as range anxiety, the availability of 
charging points, the distance to these points, and pricing. 
In each charging activities, the following parameters in the table are included: 
  
 

Name  Description  

scenarioName  generic name of the scenario  

scenarioType  unique iD of the scenario  

scenarioLocation  geographical area of the charging stations  

scenarioCountry  iD of the country  

scenarioTimeHours  temporal arc of the scenario  

charActivities  list containing detailed information on users’ charging 

relative activities  

userId iD of the user  

stationId  iD of the charging station or building where the user stops  

chargerId  iD of the specific charger used  

type  charging type (same dictionary as scenarioName)  

coordinates  coordinates of the station or building where the user stops   

sequence  sequence of charging activities  

initSOC SOC at plugTime  

requiredSOC  minimum SOC required to complete the driving activity  

plugTime  time at which the user plugs his vehicle  

unplugTime  time at which the user unplugs his vehicle  

v2x  willing of the user to use the x technology  
Table 16: Charging activities definition 

*Refer to D4.2 for detailed reference values and examples. 
  
Using the charging data generated by the user model for a full month of January 2024 
in Lyon, it is possible to analyze and compare how EV penetration and user attitudes 
towards V2X technology have a concrete impact on charging activities. 
  
The Figure 21 below compares the number of total charging activities in the Lyon 
metropolitan area for a full month at different EV penetration rates, 5% and 30%, when 
100% of users agree to use V2X technology. It can be seen that when EV penetration 
reaches 30%, the number of charging events in the city increases dramatically, about 
48 times as much as at 5% penetration. When EV penetration rate is determined, the 
percentage of users agreeing to V2X technology will not have any impact on the 
number of total charge activities. 
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Figure 21: Comparison of charging activities number at different EV penetration, 30% and 5%, when 100% of the users agree to use V2X 

technology. 

 
The charge incomplete rates calculated from the user model are 2.5% and 4.6% for 
different EV penetration rates of 5% and 30%, respectively. As shown in Figure 22 
below, the average charging duration for EVs shrinks as EV penetration increases. As 
a result, there is a gradual increase in the number of occupied charging stations where 
users are not able to complete their charging event in the limited duration. With public 
charging facilities remaining unchanged, the flexibility to provide bi-directional charging 
per user decreases, but the number of EVs connected to the grid increases 
dramatically. This significantly increases the capacity of distributed energy storage and 
opens up the possibility of subsequent participation in the balancing market. 
  

 
Figure 22: Comparison of connection time distribution at different EV penetration, 30% and 5%, when 100% of the users agree to use V2X 

technology 
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Figure 23 and Figure 24 below show how the number of EVs connected for charging 
varies over time The zoom in of the blue curve in Figure 23 is shown in Figure 24. 
throughout the month. Contrary to expectations, weekends are not necessarily the time 
when public chargers are most frequently used. It's hard to get a very clear pattern 
since people usually plan vacations in January as well, but peaks in the number of 
charging vehicles occur once every 5-7 days. During the day, the number of vehicles 
charging at public charging stations increases significantly from the afternoon onwards. 
When EV penetration is only 5%, there is little difference between the peaks and 
valleys of charging each day of the month, but when EV penetration reaches 30%, the 
cyclical occurrence of charging peaks is amplified. 
 

 
Figure 23: Comparison of plugged in vehicle number over time at different EV penetration, 30% and 5%, when 100% of the users agree to use 

V2X technology 

  

 
Figure 24: Zoomed in plugged in vehicle number over time at 5% EV penetration, when 100% of the users agree to use V2X technology. 
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4.3. Scenarios 

The scenario for this virtual demonstration is based on the French city of Lyon. In this 
scenario, an EV aggregator is used to centrally control all the public charging stations 
scattered throughout Lyon. The aggregator is trained in reinforcement learning by 
using part of the charging activities mentioned above. The trained agent, also referred 
to as aggregator helps the charging station operators to set more reasonable dynamic 
retail prices based on the current market situation and charging demand. It also 
controls charging and discharging to meet the charging needs of as many users as 
possible. 
The scenario is defined as follows: 

• Simulation year: 2024 

• Energy market price: France day-ahead market 

• Retail price: The initial value of the retail price is obtained by multiplying the 
whole selling price by 3, where 3 is an experience value based on current 
market pricing. 

• Number of vehicles: 10 

• Location of charging stations: all the charging stations are located in Lyon, 
France 

• Charging station max charging power: 50 kW, Since the maximum charging and 
discharging power of all charging posts in the user model is 22kW, under this 
condition all charging events use the maximum power to charge still 4.6% of the 
cars do not reach the target SoC in a limited time, here we will study the benefits 
of V2G for the user when the maximum charging and discharging power of the 
charging posts is extended to more than double. 

• Charging station max discharging power: 50 kW 

• Target energy: defined by user and next activities 

• EV penetration rate: 30% 

• V2G willing: 100% 
  

4.4. Smart Public Charging in France 

An EV aggregator will be used to realize the smart bi-directional charging the 
aggregator.  
For an explanation of the detailed functions, please refer to D4.3 of XL Connect. 
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Figure 25: Vehicle Connection Times 

 

 

  
 
 

Figure 26: Episode reward for Env_CS_Market_Users with rIDDPGAgent Figure 26: Episode reward for Env_CS_Market_Users with rIDDPGAgent 
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4.5. Outlook 

For the current training and simulations, the number of vehicles used was set to a very 
limited number of 10 in order to explore the feasibility of the methodology and to save 
computational costs, but in the coming year, aggregators suitable for larger scenarios 
will be trained and the results will be presented in D4.3. Currently charging activities 
are only generated for the first month of the year, and since factors such as weather 
are not taken into account in the user model, the month does not have much effect on 
the public charging data generated for the user model. However, in the subsequent 
training of the aggregator, it is desired to include the ability to participate in the 
balancing market, so simulation for a full year is necessary due to the fact that the load 
profiles will be very different. 
  
The virtual demonstration only focus on the France city due to lacking of public 
charging data from other countries, but we plan to include more real world charging 
data or simulated charging data in other European countries as the project progressed. 
And if it is possible to obtain real charging events of public charging stations in the 
coming year, it can also be used to validate the reference ability of the charging 
activities generated by the current user models. 
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5. Conclusion 

 
The scalable model for Energy Communities with charging park areas investigates the 
potential to reduce energy costs as well as the exchanged energy with the grid by 
applying a simulation model in a MATLAB-Simulink environment for an V2G setup. In 
the analysis V1G and V2G scenarios with optimization algorithms are compared to 
uncontrolled reference scenarios at different daytimes. The simulated results show a 
slight reduction in energy costs. A reduction of 4 % for V2G and 2.5 % for V1G was 
recognised compared to the uncontrolled scenario, with the same amount of energy 
supplied. With V1G, charging processes are shifted to periods with lower energy 
prices, while with V2G the possibility of discharging is used to sell energy during 
periods of high prices. 
 
The results of the Neuman use case show a comparison of V2B setup with a local 
storage set up. These results show that the V2B setups have the potential to become 
an alternative to an ordinary local storage, but there is a considerable uncertainty 
regarding the willingness to participate of the employees. Therefore, additional insights 
regarding willingness to use new charging technologies and user behaviour in general 
is needed to further develop the model. Therefore, the results of Task 2.1 are essential 
to further develop the model for the Neuman use case. In addition, the model is being 
further developed by including waste heat utilisation for heating purposes. 
 
The virtual use case on bidirectional charging in smart cities shows first results. In this 
use case the charging activity is influenced by a designed user behaviour model of the 
EV users. Therefore, charging activities vary depending on the willingness to use V2X, 
the range anxiety of the user, the willingness to wait as well as the battery capacity and 
health. First the number of charging activities based on the EV penetration rate and 
the willingness to use V2G was investigated. It can be shown that charging activities 
increases 48 times when the EV penetration rate increases from 5 to 30%. Second, an 
aggregator that handles the charging sessions of 10 cars was trained by unsupervised 
learning algorithms. The results show charging sessions of 10 EVs at a 30% 
penetration rate assuming a 100% willingness to use V2G. The model will be further 
developed in increase the number of vehicles managed by the aggregator as well as 
to simulate scenarios other than for French cities. 
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